Computable Error Bounds for Finite Element Approximation on Non-polygonal Domains

نویسندگان

  • MARK AINSWORTH
  • RICHARD RANKIN
چکیده

Fully computable, guaranteed bounds are obtained on the error in the finite element approximation which take the effect of the boundary approximation into account. We consider the case of piecewise affine approximation of the Poisson problem with pure Neumann boundary data, and obtain a fully computable quantity which is shown to provide a guaranteed upper bound on the energy norm of the error. The estimator provides, up to a constant and oscillation terms, local lower bounds on the energy norm of the error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape

The finite element method (FEM) is applied to bound leading eigenvalues of the Laplace operator over polygonal domains. Compared with classical numerical methods, most of which can only give concrete eigenvalue bounds over special domains of symmetry, our proposed algorithm can provide concrete eigenvalue bounds for domains of arbitrary shape, even when the eigenfunction has a singularity. The ...

متن کامل

Finite element approximation of spectral acoustic problems on curved domains

This paper deals with the finite element approximation of the displacement formulation of the spectral acoustic problem on a curved non convex two-dimensional domain Ω. Convergence and error estimates are proved for Raviart-Thomas elements on a discrete polygonal domainΩh 6⊂ Ω in the framework of the abstract spectral approximation theory. Similar results have been previously proved only for po...

متن کامل

An a posteriori error estimate for finite element approximations of a singularly perturbed advection-diffusion problem

In this paper the author presents an a posteriori error estimator for approximations of the solution to an advectiondiffusion equation with a non-constant, vector-valued diffusion coefficient e in a conforming finite element space. Based on the complementary variational principle, we show that the error of an approximate solution in an associated energy norm is bounded by the sum of the weighte...

متن کامل

Error Estimates for the Finite Volume Element Method for Elliptic Pde’s in Nonconvex Polygonal Domains

We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H –, L2– and L∞–norm, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.

متن کامل

A posteriori error estimates for the virtual element method

An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012